ANANDALAYA
 PRACTICE TEST
 Class: XII

Subject: Mathematics
M.M: 80

Date : 16/12/2019

General Instructions:

(i) All the questions are compulsory.
(ii) The question paper consists of 36 questions divided into 4 sections A, B, C, and D.
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

SECTION-A

Q. 1 to Q. 10 are multiple choce type questions. Select the correct option.

1. If a matrix A is both symmetric and skew symmetric then matrix A is \qquad .
(a) a scalar matrix
(b) a diagonal matrix
(c) a zero matrix of order n x n
(d) a rectangular matrix
2. If matrices A and B are inverse of each other then which relation is true from the following?
(a) $\mathrm{AB}=\mathrm{BA}$
(b) $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$
(c) $\mathrm{AB}=\mathrm{BA}=\mathrm{O}$
(d) $\mathrm{AB}=\mathrm{O}, \mathrm{BA}=\mathrm{I}$
3. If $(2 \hat{\imath}+6 \hat{\jmath}+14 \hat{k}) \times(\hat{\imath}-\alpha \hat{\jmath}+7 \hat{k})=\overrightarrow{0}$. then what is the value of α ?
(a) 3
(b) -3
(c) 12
(d) $\quad-12$
4. Given $P(A)=0.4, P(B)=0.7$ and $P(B / A)=0.6$. Find $P(A \cup B)$.
(a) 0.86
(b) 0.76
(c) 0.14
(d) 0.24
5. A dealer wishes to purchase a number of fans and sewing machines. He has only` 5,760 to invest and has space for at most 20 items. A fan costs him` 360 and a sewing machine` 240 He expects to sell a fan at a profit of` 22 and a sewing machine at a profit of` 18 . Assuming that he can sell all the items that he buys, how should he invest his money to maximize the profit? The LPP for above equation is
(a) $\mathrm{x} \rightarrow$ fans, $\mathrm{y} \rightarrow$ sewing machines

To maximize $Z=22 x+18 y$
Subject to constraints
$x \geq 0, y \geq 0, x+y \leq 20$
$360 x+240 y \geq 5760$
(c) $\quad \mathrm{x} \rightarrow$ fans, $\mathrm{y} \rightarrow$ sewing machines

To maximize $Z=18 x+22 y$
Subject to constraints
$x \geq 0, y \geq 0, x+y \geq 0$
$360 x+240 y \leq 5760$
(b) $\mathrm{x} \rightarrow$ fans, $\mathrm{y} \rightarrow$ sewing machines

To maximize $Z=18 \mathrm{x}+22 \mathrm{y}$
Subject to constraints
$x \geq 0, y \geq 0, x+y \leq 20$
$360 x+240 y \geq 5760$
(d) $\mathrm{x} \rightarrow$ fans, $\mathrm{y} \rightarrow$ sewing machines

To maximize $Z=22 x+18 y$
Subject to constraints
$x \geq 0, y \geq 0, x+y \leq 20$
$360 x+240 y \leq 5760$
6. If $\sec ^{-1} x+\sec ^{-1} y=\pi$, then the value of $\operatorname{cosec}^{-1} x+\operatorname{cosec}^{-1} y$ is \qquad .
(a) 0
(b) π
(c) $\pi / 2$
(d) $-\pi / 2$
7. Two dice are thrown. Find the probability that the numbers appeared have a sum 8 if it is known that the second die always exhibits 4.
(a) $1 / 2$
(b) $1 / 4$
(c) $1 / 6$
(d) $1 / 8$
8. Value of $\int_{0}^{1} \frac{1}{\sqrt{2 x+3}} d x$.
(a) $(\sqrt{3}-\sqrt{5})$
(b) $2(\sqrt{5}-\sqrt{3})$
(c) $(\sqrt{5}-\sqrt{3})$
(d) $2(\sqrt{3}-\sqrt{5})$
9. What is the distance (in units) between the two planes
$2 x-y+2 z=5$ and $5 x-2.5 y+5 z=20$.
(a) $1 / 3$
(b) 1
(c) 3
(d) $13 / 3$
10. What is the angle between the following pair of lines:
$\frac{-x+2}{-2}=\frac{y-1}{7}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{2 y-8}{4}=\frac{z-5}{4}$
(a) 0
(b) $\pi / 6$
(c) $\pi / 2$
(d) $\pi / 4$

Q. 11 to Q. 15 fill in the blanks

11. If $f: R \rightarrow R$ is defined by $f(x)=3 x+2$, then the value of $(f o f)(-1)$ is \qquad -
12. If the function $f(x)=\left\{\begin{array}{ll}k x^{2} & \text { if } x \geq 1 \\ 4 & \text { if } x<1\end{array}\right.$ is continues at $\mathrm{x}=1$, then the value of k is \qquad .
13. If the matrix $A=\left[\begin{array}{ccc}0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0\end{array}\right]$ is skew symmetric, then the values of ' a ' is \qquad and ' b ' is \qquad .
14. The equation of the normal to the curve $y=\sin x$ at $(0,0)$ is \qquad .

OR

If the radius of a circle is increased from 5 cm to 5.1 cm . The approximate increase in area is \qquad .
15. The parallelogram having diagonals $(3 \hat{\imath}+\hat{\jmath}-2 \hat{k})$ and $(\hat{\imath}-3 \hat{\jmath}+4 \hat{k})$, then the area of it is
\qquad sq units.

OR

If $|\vec{a}|=2,|\vec{b}|=\sqrt{3}$ and $\vec{a} \cdot \vec{b}=\sqrt{3}$, then the angle between \vec{a} and \vec{b} is \qquad .

Q. 16 to Q. 20 Answer the following questions.

16. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in AP, prove that $\left|\begin{array}{lll}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|=0$.
17. Evaluate: $\int_{0}^{\frac{\pi}{2}} e^{x}(\sin x-\cos x) d x$.
18. Evaluate: $\int \frac{\cos x-\cos 2 x}{1-\cos x} d x$.

Evaluate: $\int \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cdot \cos ^{2} x} d x$.
19. Evaluate: $\int\left(\frac{1}{\log x}-\frac{1}{(\log x)^{2}}\right) d x$.
20. Find the differential equation of the family of lines passing though the origin.

SECTION-B

21. Write in the simplest form: $\cot ^{-1}\left(\sqrt{1+x^{2}}-x\right)$.

OR

Let R be the relation defined on N (set of natural numbers) defined by $R=\{(a, b): a, b \in N$ and b is divisible by a . Show that the relation is transitive. Write the equivalence class [4].
22. If $y=\operatorname{cosec} x+\cot x$, show that $\sin x \times \frac{d^{2} y}{d x^{2}}=y^{2}$.
23. A particle moves along the curve $6 y=x^{3}+2$. Find the points on the curve at which $y-$ coordinate is changing 8 times as fast as the x -coordinate.
24. For three non-zero vectors \vec{a}, \vec{b} and \vec{c}, prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$.

OR

If $\vec{p}=5 \hat{\imath}+\lambda \hat{\jmath}-3 \hat{k}$ and $\vec{q}=\hat{\imath}+3 \hat{\jmath}-5 \hat{k}$, then find the value(s) of λ so that $\vec{p}+\vec{q}$ and $\vec{p}-\vec{q}$ are perpendicular vectors.
25. Find the angle θ between the line $\frac{x-2}{3}=\frac{y-3}{5}=\frac{z-4}{4}$ and the plane $2 x-2 y+z-5=0$.
26. A die is thrown twice and the sum of the numbers appearing is observed to be 7 . What is the conditional probability that the number 2 has appeared at least once?

SECTION - C

27. Let $\mathrm{A}=\mathrm{R}-\{3\}$ and $\mathrm{B}=\mathrm{R}-\{1\}$. Show that the function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$ is bijective. Also find its inverse.
28. If $y=\left(\sin ^{-1} x\right)^{2}$, prove that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=2$.

Find the derivate of $\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$ with restpect to $\sqrt{1-x^{2}}$ at $x=1 / 2$.
29. Find the particular solution of the differential equation $\frac{d y}{d x}=1+x+y+x y$ given that $\mathrm{y}=0$, when $\mathrm{x}=1$.
30. Evaluate: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{d x}{1+\sqrt{\cot x}}$.
31. From a lot of 10 bulbs, which includes 3 defective bulbs, a sample 0 f 2 bulbs is drawn at random.

Find the probability distribution of defective bulbs.

OR

Three machines E1, E2 and E3 in a certain factory producing electric bulbs, produce 50\%, 25\% and 25% respectively, of the total output of electric bulbs. It is know that 4% of the bulbs produced by each machines E1 and E2 are defective and that 5\% of those produced by machine E3 are defective. If one bulb is picked up at random from a day's production, calculate the probability that it is defective.
32. A factory owner purchases two types of machines A and B for his factory. The requirements and limitations for the machines are as follows:

Machine	Area occupied by the machine	Labour force for each machine	Daily output (in unit)
A	1000 sq. m	12 men	60
B	$12 \mathrm{sq} . \mathrm{m}$	8	40

He has an area of 9000 sq. m available and 72 skilled men who can operate the machines. How many machines of each type should he buy to maximize the daily output?

SECTION-D

33. Using the properties of determinants, prove that
$\left|\begin{array}{ccc}a^{2}+1 & a b & a c \\ b a & b^{2}+1 & b c \\ c a & c b & c^{2}+1\end{array}\right|=a^{2}+b^{2}+c^{2}+1$.
If $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right]$, find $A B$. Hence, solve the system of equations:
$x-y=3,2 x+3 y+4 z+17$ and $y+2 z=7$.
34. Using integration, find the area of the region $\left\{(x, y) ; x^{2}+y^{2} \leq 1 \leq x+\frac{y}{2}\right\}$.

35 Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.

OR

$A B$ is a diameter of a circle and C is any point on the circle. Show that the area of triangle $A B C$ is maximum, when it is isosceles.
36. Find the coordinates of the point where the line through the points $\mathrm{A}(3,4,1)$ and $\mathrm{B}(5,1,6)$
crosses the plane determined by the points $\mathrm{P}(2,1,2), \mathrm{Q}(3,1,0)$ and $\mathrm{R}(4,-2,1)$.

